Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Introduction

We would like to be able to determine how fresh is the data on HDX for two purposes. Firstly, we want to be able to encourage data contributors to make regular updates of their data where applicable, and secondly, we want to be able to tell users of HDX how up to date are the datasets in which they are interested. 

Important fields


FieldDescriptionPurpose
data_update_frequencyDataset expected update frequencyShows how often the data is expected to be updated or at least checked to see if it needs updating
revision_last_updatedResource last modified dateIndicates the last time the resource was updated irrespective of whether it was a major or minor change
dataset_dateDataset dateThe date referred to by the data in the dataset. It changes when data for a new date comes to HDX so may not need to change for minor updates
There are two dates that data can have and this can cause confusion, so we define them clearly here:

...

Once we have an update time for a dataset's resources, we can calculate its age and combined with the update frequency, we can ascertain the freshness of the dataset. Here is a presentation about data freshness from January 2017.

Dataset Aging Methodology

A resource's age can be measured using today's date - last update time. For a dataset, we take the lowest age of all its resources. This value can be compared with the update frequency to determine an age status for the dataset.

 


Thought

has

had previously gone into classification of the age of datasets. Reviewing that work, the statuses used (up to date, due, overdue and delinquent) and formulae for calculating those statuses are sound so they have been used as a foundation. It is important that we distinguish between what we report to our users and data providers with what we need for our automated processing. For the purposes of reporting, then the terminology we

would

use is simply fresh or not fresh. For contacting data providers, we must give them some leeway from the due date (technically the date after which the data is no longer fresh): the automated email would be sent on the overdue date rather than the due date

(but in the email we would tell the data provider that we think their data is not fresh and needs to be updated rather than referring to states like overdue)

. The delinquent date would also be used in an automated process that tells us it is time for us to manually contact the data providers to see if they have any problems we can help with regarding updating their data.


Update Frequency

Dataset age state thresholds

(how old must a dataset be for it to have this status)

FreshNot Fresh

Up-to-date

Due

Overdue

Delinquent

Daily

0 days old

1 day old

due_age = f

2 days old

overdue_age = f + 2

3 days old

delinquent_age = f + 3

Weekly

0 - 6 days old

7 days old

due_age = f

14 days old

overdue_age = f + 7

21 days old

delinquent_age = f + 14

Fortnightly

0 - 13 days old

14 days old

due_age = f

21 days old

overdue_age = f + 7

28 days old

delinquent_age = f + 14

Monthly

0 -29 days old

30 days old

due_age = f

44 days old

overdue_age = f + 14

60 days old

delinquent_age = f + 30

Quarterly

0 - 89 days old

90 days old

due_age = f

120 days old

overdue_age = f + 30

150 days old

delinquent_age = f + 60

Semiannually

0 - 179 days old

180 days old

due_age = f

210 days old

overdue_age = f + 30

240 days old

delinquent_age = f + 60

Annually

0 - 364 days old

365 days old

due_age = f

425 days old

overdue_age = f + 60

455 days old

delinquent_age = f + 90


NeverAlwaysNeverNeverNever


Data Freshness Architecture

...